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The one-pot cyclopropanation of styrene using ClnAlEt3�n (Et2AlCl, EtAlCl2, AlCl3) and carboxylic esters in
the presence of Cp2ZrCl2 as catalyst gives rise to alkoxycyclopropanes.
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The work reported in this Letter is a continuation of our earlier
studies on chemical transformations of organoaluminum compounds
(OACs) such as aluminacyclopentanes,1–4 aluminacyclopentenes,5,6

aluminacyclopentadienes,7 and aluminacyclopropanes.8,9 In order
to elaborate an efficient, catalytic, one-pot method for the synthesis
of substituted cyclopropanes based on a-olefins, alkylchloroalanes,
and carboxylic esters, we investigated the model reactions between
styrene and Et2AlCl, EtAlCl2, or AlCl3 in the presence of ethyl acetate
mediated by metallic Mg as an acceptor of chloride ions and a catalytic
amount of Cp2ZrCl2.

Our idea was based on the previously obtained results on
cycloalumination of aryl ethylenes using EtAlCl2 to give aluminacy-
clopropanes under the action of Ti complexes.8 The formation of
phenyltitanacyclopropane from ‘Cp2Ti’ and styrene was the key
step in this reaction. We assumed that under the chosen conditions
the coordinatively unsaturated zirconocene ‘Cp2Zr’ would coordi-
nate the styrene molecule providing intermediate phenylzircona-
cyclopropane 1, transmetalation of which in situ by the OAC or
AlCl3 would then afford aluminacyclopropane 2. Subsequent reac-
tion of 2 with RCO2R0 at the active Al–C bond and further hydroly-
sis of the reaction mixture would yield phenylcyclopropane-type
compounds such as 1-ethoxy-1-methyl-2-phenylcyclopropane 3
and 1-methyl-2-phenylcyclopropanol 4 (Scheme 1).
ll rights reserved.
The reaction of styrene and Et2AlCl (1:2 ratio) catalyzed by
Cp2ZrCl2 (10 mol %) in the presence of metallic Mg and ethyl acetate
(THF, 8 h, �20 �C styrene/[Al]/CH3CO2Et/Mg/[Zr] = 1:2:1:1.5:0.1)
was shown to afford, after hydrolysis, stereoisomeric cis/trans-1-eth-
oxy-1-methyl-2-phenylcyclopropanes, cis-3a and trans-3a, in a ratio
of �1:1 and 52% yield (styrene conversion was 80%) (Scheme 2).10

The 1H and 13C NMR spectra of the mixture of cis-3a and trans-
3a showed signals due to the ethoxy and phenyl groups as well as
two characteristic singlets assigned to the methyl group [d (CH3),
1.16 and 1.54, d (CH3), 16.13 and 21.7].

For a reliable assignment of the signals in the NMR spectra and
in order to establish the structures of the stereoisomers, homonu-
clear (HH COSY) and heteronuclear (HSQC and HMBC) two-dimen-
sional experiments were performed. As reference signals, the
observed methyl proton resonance at 1.54 ppm correlated with
the signals of the quaternary C1 carbon atom (d 62.89), the
methine C2 carbon atom (d 30.6), and the methylene C3 carbon
atom (d 21.0) in the HMBC experiment. In contrast, the upfield
methyl group (d 1.16) interacted with the relevant carbon signals
at 62.4, 29.7, and 18.0 ppm, respectively. These signals correspond
to the carbon atoms of the two possible stereoisomeric cis- and
trans-1-ethoxy-1-methyl-2-phenylcyclopropanes. The stereo
assignments of the signals in the 1H NMR spectra of 1,1,2-trisubsti-
tuted cyclopropanes, according to specific magnitudes of the vici-
nal spin-spin interaction constant (SSIC) between three protons,
appeared to be rather difficult because each of the isomers should
display both the cis (8�10 Hz) and the trans (3�5 Hz) vicinal con-
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stants.11 In this context, we examined the 1H NMR data of cis-3a,
which drew attention to the rather unusual signals of the methy-
lene protons of the ethoxy group. Diastereotopic splitting of the
methylene protons [d (HaHbC–O) 3.04 (quin, 2J � 3J = 7.2 Hz) and
3.52 (quin, 2J � 3J = 7.2 Hz)] apparently occurs due to blocked rota-
tion of the C�O�CH2 bonds ascribed to the anisotropic shielding
effect of the bulky phenyl group in the cis isomer.

Such splitting was not observed in the NMR spectra of trans-3a
due to free rotation of the trans ethoxy group. High-field shielding
of the methyl carbon atom [d (CH3) 16.1] by the phenyl substituent
characterizes trans-3a compared with cis-3a [d (CH3) 21.7]. The
methyl chemical shift value for cis-3a correlates with the chemical
shift value [d (CH3) 20.6] for cis-1-hydroxy-1-methyl-2-phenylcy-
clopropane 4 previously obtained via the Kulinkovich reaction.12

In order to clarify the mechanism of the styrene cyclopropana-
tion reaction using Et2AlCl and ethyl acetate, additional experi-
ments were undertaken, which demonstrated the requirement
for mediation by Mg and Cp2ZrCl2.

In view of these results, the mechanistic proposals assume that
in the presence of styrene the generation of a coordinatively unsat-
urated complex ‘Cp2Zr’ occurs through reduction of Cp2ZrCl2 by
Mg13,14 with simultaneous formation of 2-phenylzirconacyclopro-
pane 1.15 Subsequent transmetalation of 1 with Et2AlCl in the pres-
ence of ethyl acetate led to a 2-oxoaluminacyclopentane and
regeneration of Cp2ZrCl2. Carbocyclization of the 2-oxoalumina-
cyclopentane followed by carbonyl deoxygenation of ethyl acetate
apparently acts as the driving force16,17 for the formation of cyclo-
propane ether 3. Without ethyl acetate the reaction affords 1,4-
dialuminiobutanes.18

These specific conditions (10 mol % Cp2ZrCl2, 20 �C, THF, 8 h,
styrene/AlCl3/ester/Mg = 1:2:2:1.5) appeared to favor styrene
cyclopropanation in the presence of other alkyl carboxylates,
namely n-butyl acetate, allyl acetate, isoamyl propionate, and
methyl caproate to afford the corresponding stereoisomeric cyclo-
propane ethers cis-3b�e and trans-3b�e (cis/trans � 1:1) in
40�52% yield.19

In conclusion, we have developed a new and efficient method
for the cyclopropanation of styrene assisted by EtnAlCl3-n and alkyl
carboxylates to afford the corresponding alkoxycyclopropanes.
Systematic investigations of this reaction aim to clarify the pro-
posed mechanism and the scope of unsaturated compounds and
carbonyl compounds amenable to this process.
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